Handout: Practice with the Definition of a Derivative

Let f be a function. Recall that if the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists, then we say it is the derivative of f at a, and denote it by $f^{\prime}(a)$.
Problem 1. Let $f(x)=(x-2)^{2}$. Compute $f(5)$ and $f^{\prime}(5)$.
Problem 2. Let $g(x)=\sqrt{x}+2$. Compute $g(9)$ and $g^{\prime}(9)$.
Compare your answers to the preceding problems. Draw a picture and see if you understand the connection between them!
Problem 3. Recall from lecture a while ago that the number e has the property that the tangent line to the graph of $y=e^{x}$ at the point $(0,1)$ has slope exactly 1 .

In other words, with $f(x)=e^{x}$, it is true that $f^{\prime}(0)=1$.
Assuming this fact, compute $f^{\prime}(a)$ in terms of a, for any number a.
Problem 4. Suppose f is some function and g is defined as $g(x)=f(c x)$ for some nonzero constant c. (Do you remember how the graph of g compares to the graph of f in such a situation?)

Let a be any number. Find a way to relate the quantity $g^{\prime}(a)$ to the quantity $f^{\prime}(c a)$ (provided both quantities exist). This is a special case of the so-called chain rule that we will cover later.
Problem 5. Let $g(x)=b^{x}$ for some base $b>0$ which is not equal to 1 . Compute $g^{\prime}(a)$ for arbitrary a. Hint: see if you can make use of Problems 3 and 4. How are $g(x)=b^{x}$ and $f(x)=e^{x}$ related?

Remark. When people actually want to compute derivatives, they typically don't use the definition to do so! It's the same thing as with the whole epsilon-delta limit business-we're showing you these things so that you understand where limits and derivatives come from. Soon we will develop more sophisticated ways of computing derivatives in practice ("derivative laws" so to speak, just as how we had "limit laws").

